Structural Assimilation Revisited:
Mexican-Origin Nativity and Cross-Ethnic Primary Ties

Susan K. Brown, University of California, Irvine

Abstract
Classical assimilation theory postulates that over time, members of immigrant groups will develop more primary ties with native members of the host society. However, lack of data has led most research to rely on the study of either spatial mobility or other secondary variables as proxies of primary ties. Using data from the Multi-City Study of Urban Inequality, this research examines primary relations, comparing the number of cross-ethnic strong ties among foreign- and native-born generations of persons of Mexican origin in Los Angeles County. The findings indicate that the native-born are substantially more likely to report cross-ethnic ties than immigrants. Spatial variables only partially explain the effect of primary structural assimilation, implying that both primary group and spatial dynamics play important roles in structural incorporation.

The degree to which members of immigrant groups forge primary relations with native-born members of other ethnic groups constitutes the linchpin idea in traditional assimilation theory. Milton M. Gordon (1964:70) called the development of such primary relations “structural assimilation,” defining it as entering “fully into the societal network of groups and institutions” of the host society. Newer refinements of assimilation or incorporation theory (e.g., Alba and Nee 2003; Bean, Stevens and Wierzbicki 2003) have emphasized institutional and other contextual factors that condition educational and earnings assimilation (the major kinds of structural assimilation examined in contemporary research). Nevertheless, the crucial ability to enter social networks beyond one’s own group remains vital to an assessment of immigrant incorporation and economic mobility (Portes 1995). However, relatively few studies (Crispino 1980; Laumann 1973; South, Crowder and Chavez 2005; Tilly 1990; Wierzbicki 2004) have examined assimilation in terms of such primary relations, mostly because of lack of appropriate data. This paper assesses the structural incorporation of persons of Mexican origin in the United States, focusing on strong primary social ties as the major indicator of structural assimilation and on the degree to which cross-ethnic ties are greater among the native-born as opposed to foreign-born members of the group, even when neighborhood indicators of spatial assimilation are taken into account.

Many thanks to Frank D. Bean, Elisa Bienenstock, Avery M. Guest, Charles Hirschman, Becky Pettit, Audrey Singer and two anonymous reviewers for comments on previous versions of this paper. Thanks is also due for suggestions that followed a presentation of the paper at the Center for Research in Immigration, Population and Public Policy at UCI. Research was supported in part by a grant from the U.S. Department of Housing and Urban Development. Direct correspondence to Susan K. Brown, Department of Sociology, University of California, Irvine, 3151 Social Science Plaza, Irvine, CA 92697-5100. E-mail: skbrown@uci.edu.
The Connection Between Assimilation Theory and Homogeneity in Social Ties

The concepts of assimilation and incorporation have been re-examined recently after a generation of criticism (Alba and Nee 2003, 1997; Bean et al. 2003; Brubaker 2001; Kazal 1995). Although classic assimilation theory never predicted unadulterated Anglo-conformity, its implications of “straight-line” change among immigrant groups have been challenged by the findings of segmented-assimilation research (Portes and Rumbaut 2001, Zhou and Bankston 1998), which shows how ethnic networks may stratify the incorporation of the children of immigrants. Newer works (Alba and Nee 2003, Bean et al. 2003) recast assimilation less sequentially, as the result of individual decisions and collective action in densely tied groups. Crucial change comes through the blurring of boundaries between groups, and this depends on close and continuous contact between the members of different groups, reinforced by institutions that uphold civil rights. Brubaker (2001) recommends analyses that focus on multiple generations, and that such groups be thought of as heterogeneous across multiple dimensions. Assimilation would then involve changes in the generational distribution of an immigrant group across dimensions so that the distribution in later generations resembles that of the reference group.

Such new conceptions of assimilation extend Gordon’s canonical (1964) framework and demonstrate its continuing basic relevance, particularly in regards to the importance of primary social ties. Gordon distinguishes seven dimensions of assimilation in ways that encourage empirical analysis of a previously diffuse concept. His first dimension is acculturation or change in cultural patterns. The second, which Gordon (1964:81) calls the “keystone to the arch of assimilation,” is structural assimilation, or widespread primary relations among groups and full entrance into the social networks and institutions of others. In his view, structural assimilation automatically spurs the other dimensions of assimilation: intermarriage, unity of identification, absence of prejudice, absence of discrimination and absence of power conflicts. Empirical analysis of assimilation has long focused on Gordon’s types of assimilation, since several of the dimensions (e.g., intermarriage) readily lend themselves to operationalization. However, the keystone component of structural assimilation has either been neglected for lack of data or operationalized in terms of spatial assimilation or socioeconomic assimilation. (For exceptions, see Crispino 1980 and South et al. 2005.) Because primary structural assimilation may or may not be related to what are often assumed to be adequate proxies of it, the use of such proxies without assessing their intersection with primary social ties leaves open not only the question of their construct validity, but also the question of the degree to which primary structural assimilation may occur independently of spatial or socioeconomic assimilation.

The correspondence of spatial assimilation with primary structural assimilation is particularly important in this regard. Researchers relying on spatial patterns as indicators of primary structural assimilation (generally through suburbanization) argue that spatial mobility is necessary as “an intermediate step” for the social and economic assimilation of immigrants (Alba and Nee 2003:29, Massey 1985, Massey and Denton 1987). However, the use of spatial assimilation as an indicator
of structural assimilation assumes that physical distance is tantamount to social distance, though the nature and extent of this connection remains a long-running theoretical and empirical question. Studies of suburbs have shown that ethnic minorities who have spatially assimilated often remain socially isolated in their new neighborhoods, depending instead on longstanding but distant ties (Fischer 1984, Gans 1967). Network perspectives hold that spatial proximity matters most for establishing contacts, but that homogeneity is more important for sustaining social ties over time (McPherson, Smith-Lovin and Cook 2001; Verbrugge 1977; Wellman 1996). To the extent this is true, social ties could range far beyond any given neighborhood or, in the case of immigrants, beyond even national boundaries (Massey et al. 1987, 1998; Palloni et al. 2001; Waldinger 1993; Wellman and Wortley 1990; Zelinsky and Lee 1998; Zhou 1998).

Paradoxically, the literature on neighborhoods has often argued that homogeneity in social ties characterizes immigrant communities. Early studies portrayed second-generation enclaves as dense and solid (e.g., Gans 1962; Suttles 1968), with multiplex social relationships. More recent works have shown that communities with closed networks can provide social support and social capital (Portes and Bach 1985, Zhou and Bankston 1998). Ethnic enclaves tend to be conceptualized as buffer zones that re-create familiar institutions and allow the use of mother-tongue languages. Ethnographic research in multiethnic neighborhoods has found strong in-group rather than cross-group ties. Where Anglos and Mexican Americans live together, their neighborhood improvement organizations tend to be dominated by one group or the other and each is mistrustful of the other (Gonzales 1993). While immigrants of different national origins may be friendly, they tend to socialize with friends or family of the same ethnic group in the fashion of extended kin (Conquergood 1992; Hagan and Rodriguez 1992), but their networks are often highly gendered (Hondagneu-Sotelo 1994, Menjivar 2000). While early enclaves were largely working class, some new enclaves that are more socio-economically diverse also show class divisions within some recent immigrant groups (Zhou and Kim 2003).

Over time, however, the social distance between Anglos and Mexican-Americans appears to wane, according to historical marriage records that show growth in intermarriage (Cazares, Murguia and Frisbie 1985). Dense ethnic ties are not unchanging for immigrant groups (Ochoa 2000). Moreover, other factors such as group size, internal variation and the salience of different ascriptive or achieved parameters of structural dimensions, also affect intergroup contacts and group solidarity (Blau 1977). When groups become more heterogeneous along salient dimensions, more cross-cutting contacts evolve and more evidence of the sort of structural assimilation Gordon was talking about is likely to emerge. Yancey, Ericksen and Juliani (1976) identify conditions that reinforce kinship and friendship networks and ethnic solidarity: common jobs, residential stability and concentration, and dependence on shared institutions and services. Undermining ethnic solidarity are such factors as class and gender inequality and religion (Abelmann and Lie 1995, Espiritu and Ong 1994, Pessar 1999). Even though structural parameters introduce aggregate variability into the types of social ties forged by immigrants at destination, an examination of the ethnic composition of primary social ties at the micro-level nevertheless offers the prospect of clarifying
the role of primary-group ties in structural assimilation, the outcome that Gordon viewed as the most important component of immigrant incorporation.

Hypotheses

In the immigrant generation, ethnic, language and cultural barriers often preclude the development of numerous strong cross-ethnic ties. The native born, however, presumably develop more cross-ethnic ties because they have attended U.S. schools and had contact with more members of the native born (Emerson, Kimbro and Yancey 2002). Thus, the main hypothesis of this research, here termed the primary structural assimilation hypothesis, is that native-born persons of Mexican origin will show more cross-ethnic strong ties than the foreign born. Beyond this, however, the question remains about the degree to which any observed effect of nativity on cross-ethnic ties might simply overlap with and thus be explained by spatial assimilation. Despite well-documented evidence of housing discrimination against blacks and Hispanics (Ross and Turner 2005, Yinger 1995), an emerging body of work shows that many relatively well-off or highly skilled immigrants, especially Asians, freely choose their place of residence (Logan et al. 2002, Tseng 1995, Zelinsky and Lee 1998). In general, spatial assimilation has long been associated with socioeconomic mobility (Alba and Nee 2003, Massey and Denton 1987, White and Sassler 2000). Because those who can afford richer areas also have financial and human capital, they are also likely to have a large and varied network of acquaintances as well, since money and skills often indicate social capital (Portes 1998, Zhou and Kim 2003).

Both social and economic characteristics of the neighborhood thus are likely to be related to spatial assimilation. Because such characteristics may co-vary with spatial assimilation, they may account for any positive effect of nativity on strong cross-ethnic ties. Such a finding would provide support for research approaches that use measures of spatial mobility as proxies for primary structural assimilation. To assess this question, this research examines the influence on primary ties of important social and economic indicators of the neighborhood. If the tack taken by prior spatial-assimilation research is justified in its assumptions, any positive nativity effect on cross-ethnic ties should disappear or be significantly reduced when neighborhood variables are controlled in statistical analyses examining their effects (a result that would provide support for a spatial assimilation hypothesis). If, on the other hand, primary ties continue to constitute an independent aspect of structural assimilation, any positive nativity effect should not disappear when neighborhood characteristics are controlled (a result that would support the primary structural assimilation hypothesis).

Further evidence buttressing the idea that primary structural assimilation might operate independently of spatial assimilation would also be obtained if neighborhood characteristics were found to interact in certain ways with nativity to affect the number of cross-ethnic ties. Residence in a poor neighborhood populated mainly by members of other ethnic groups should not be associated with more heterogeneity in social ties, either for the native born or foreign born, because the resident presumably has little choice of neighborhood and would not necessarily possess much social capital. In the absence of such constraints,
however, for native-born persons living outside co-ethnic areas or in wealthier neighborhoods, one would expect more primary cross-ethnic ties than among foreign-born persons living in such areas. Under such circumstances, nativity differences should be enhanced in the better or non-co-ethnic neighborhoods, further suggesting that both characteristics of neighborhoods, as implied by the spatial assimilation approach, and primary group ties, as implied by the primary structural assimilation approach, need to be considered to develop a more complete portrait of structural incorporation. There is some question of causal direction and feedback because the development of social ties may precede settlement in any given neighborhood. South et al. (2005:597) examine the possibility that prior co-ethnic social ties influence the likelihood of moving and find little evidence that this occurs. But among those who move, having more cross-ethnic ties is positively related to the proportion Anglo in the new neighborhoods.

Data and Methods

To assess these possibilities, data are drawn from the Los Angeles County segment of the Multi-City Study of Urban Inequality (MCSUI), a multi-stage probability sample that oversampled poor and minority adult populations in four cities (Detroit, Boston, Atlanta and Los Angeles) between 1992 and 1994 (Bobo et al. 1998). In Los Angeles, the major port of immigrant entry into the United States along with New York (U.S. Immigration and Naturalization Service 2002), the oversampling had the effect of capturing many immigrants, particularly Mexicans and Central Americans. In an overall sample of 4,025 adults, 994 were Latino, and 697 of these were of Mexican origin. This sample makes the MCSUI the largest source of survey data combining both the ethnic composition of primary-group ties for adult Mexicans, the country’s major immigrant group, and neighborhood characteristics. Other surveys with large immigrant samples and information on social ties, such as the Latino National Political Survey or the National Longitudinal Study of Adolescent Health, cover a variety of metropolitan contexts. The Los Angeles sample is also large enough to allow distinguishing foreign-born from native-born persons, a key feature of the analyses in this research. The great majority of those who identify themselves as Mexican-Americans in the MCSUI sample are native born, and among those identifying as simply Mexican, 96 percent are foreign born. These two groups are combined here into a single Mexican-origin category.

The variable of interest on primary group ties consists of a question eliciting the respondent’s discussion partners. Follow-up questions were asked about the first three persons named. The actual question reads:

From time to time, most people discuss important matters with other people. Looking back over the last six months – who are the people, other than people in your own household, with whom you discussed matters important to you? Please tell me the first name or initials of the people with whom you discussed matters important to you. IF LESS THAN 3, PROBE: Anyone else?
Following previous work based on similar questions (Louch 2000, Marsden 1987, Straits 1991), the “important-discussant” question is used as a proxy for strong ties. Although the wording of the “important-discussant” question has been criticized as vague, the very diffuseness of the question is what attracted researchers to it. The question “identifies comparatively intense portions of the interpersonal environment for all respondents, and it thus has some general utility.” (Marsden 1987:123) Further studies also have confirmed the validity and usefulness of the question, even in cross-cultural contexts (Bailey and Marsden 1999; Blau, Ruan and Ardelt 1991; Straits 2000). Moreover, a strong tie that is also cross-ethnic probably indicates that the respondent is linked to diverse social networks in ways that go much further than mere intergroup contact. Social ties do not develop in a vacuum but from pre-existing social ties or around specific foci (Feld 1981), so that new contacts tend to be similar to existing contacts. The MCSUI classifies these ties as relatives, friends, co-workers or “others,” with friend being the most common choice.

The data on social ties in MCSUI are also the only large-scale survey data on Latinos from a single urban area of the country, something necessary for analyses of primary social ties. They thus afford a unique opportunity to assess primary structural assimilation in the United States among persons of Mexican origin. Despite this enormous advantage, the data are limited in certain respects. For one thing, the survey collected information on only three of each respondent’s alters. The limitation of the sample to three alters means that findings may not capture an entire social network but instead may only represent a subset of the network. The more additional alters a respondent might have named, the more likely that at least one of those ties would represent a bridge to another racial/ethnic group. The exact degree of loss in the data as a result of this is unclear, although there are reasons to think it is not large. In a General Social Survey that included data on up to five alters, the modal response was three alters, although 40 percent of the sample gave four or five. However, the GSS sample allowed people to name conversation partners from their own households, and the first alter cited was slightly more likely to be a spouse or kin (Marsden 1987). The MCSUI, however, specifically asked for ties outside the household, thus eliminating the spouse as a potential strong tie. For purposes of looking at variations in strong ties to out-groups, data from only a three-alter question that excludes spouses is likely to capture almost all of the important variation in the number of out-group ties.

Another limitation of the data is that the race or ethnicity of alters is presented in pan-ethnic terms, such as Asian or Latino. However, because the large majority of Latinos in Los Angeles are of Mexican origin, the alters are also likely to be Mexican. Also, it is impossible to tell whether alters were born in the United States or whether they knew one another. Finally, nearly one-fourth of the Los Angeles sample reported no strong ties outside the household; these respondents were disproportionately non-white, foreign born, and poorly educated.

Because eliciting the names of individuals in a network often requires probing by interviewers, the measure may be particularly prone to interviewer effects (Marsden 2003). For this reason, it is instructive to compare marginal results in Los Angeles to those in Boston because the two cities had different training
of interviewers and different placements of the network module in the survey questionnaire. Results for non-Hispanic blacks and whites were quite similar across the two cities. The variation among Hispanic groups was wider but involved different national-origin groups. In the Boston segment of the MCSUI, 32.6 percent of Puerto Ricans and 55.8 percent of Dominicans reported having no discussion partners, compared to 38.3 percent of those of Mexican origin in Los Angeles. However, the Asian sub-sample in Los Angeles, which has no counterpart in another city, appeared to have substantial interviewer effects. This is one reason it is omitted from this analysis. Overall, despite such limitations, the MCSUI module on social ties constitutes an unusually valuable source of data, as indicated by the fact it has generated useful and important results in a number of previous, significant studies (e.g., Elliott 1999; Freeman 2001; Green, Hammer and Tigges 2000; Johnson et al. 2000).

The availability of neighborhood-level data is extensive, since each respondent is geolinked to selected variables from the STF3 file of the 1990 U.S. Census of Population and Housing at the block-group level, although data identifying the particular block groups have been removed. A constructed variable for neighborhood status consists of a factor score deriving from a principal components analysis of three 1990 census characteristics: the proportion of resident adults in the block group with college education, the proportion of owner-occupied housing, and the block group’s median income. These three variables were all highly correlated with the first principal factor, which explained 78 percent of the variance among the items. White and Sassler (2000) constructed and used in their research an analogous variable based on a principle components analysis of tract-level data for five characteristics.

Because no classification exists for identifying the proportion of any ethnic group that must live in a cluster before the area becomes known as an enclave, the demarcation of an ethnic concentration is not obvious. Alba, Logan and Crowder (1997) use a standard for overrepresentation in a census tract of two times the proportion of the regional population. However, with a group that now constitutes a plurality, such as Latinos in Los Angeles, this could become a prohibitive criterion because the ethnic concentration is a function of size of the overall population as well as its level of segregation. However, the multi-stage design of MCSUI offers an ad hoc solution. Because investigators divided each city into racial and ethnic strata based on census-tract concentrations, the stratum itself can indicate the ethnic concentration. The threshold population level for determining an ethnic stratum was 50 percent for Hispanics, non-Hispanic whites and blacks, but the actual strata used to draw the Hispanic sample ranged from 63.4 percent to 86.3 percent Hispanic. While any threshold for the definition of an ethnic concentration is necessarily arbitrary, Logan et al. (2002) have found that regardless of different criteria used to define enclaves, research results tend be stable. In this analysis, regressions run using percentage Hispanic as an independent variable instead of ethnic stratum produced nearly identical results.

Methodologically, measurement of cross-ethnic ties involves tradeoffs. The above-outlined hypotheses are predicated on dyads, or the relationships between respondents and alters, as the unit of analysis. Because each respondent generally
reports more than one alter, conventional regression involving dyads as the unit of analysis would violate assumptions of independence and result in biased estimates (Louch 2000; van Duijn, van Busschbach and Snijders 1999). Because the data specifically involve counts of cross-ethnic ties, the analysis does not distinguish isolates from those who are embedded within their own group. To overcome that drawback, the research also examines the mean proportion of all ties, weighted by respondents. The use of Stata’s survey commands ensures accurate point estimates, standard errors and tests of significance (StataCorp 2001: 321-26). The numbers presented in Table 3 are from Poisson regressions, given that the dependent variable is a count of the respondents’ cross-ethnic ties that is heavily skewed toward zero, with relatively few respondents reporting more than one cross-ethnic tie. The coefficients in the table are interpretable as incidence rate ratios and are obtained by transforming the coefficients from the regression coefficients themselves (Anderton and Cheney 2004).

Findings

One in five respondents of Mexican origin in Los Angeles County has ties to a non-Hispanic, as Table 1 shows. Unsurprisingly, the proportion of respondents with cross-ethnic ties rises with the overall number of alters reported, so that among those with three alters, more than 38 percent report that at least one of those alters is cross-ethnic. Moreover, nearly half of those with cross-ethnic ties have more than one such tie. The order in which the alters are listed does not appear to affect whether the alter is cross-ethnic; that is, the first alter named is about as likely as the second or third to be cross-ethnic. In all, these 697 respondents list 1,170 alters by race or ethnicity. Of these total alters, 21.4 percent are cross-ethnic.

<table>
<thead>
<tr>
<th>Overall Number of Ties</th>
<th>Total</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of</td>
<td>.202</td>
<td>0</td>
<td>.103</td>
<td>.290</td>
<td>.381</td>
</tr>
<tr>
<td>respondents with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-ethnic ties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>697</td>
<td>253</td>
<td>49</td>
<td>64</td>
<td>331</td>
</tr>
</tbody>
</table>

Those of Mexican origin are not unusual in their level of cross-ethnic ties. Similar levels are also found among blacks, non-Hispanic whites and Asians in Los Angeles County. These levels of cross-ethnic ties are far fewer than what one would expect if ties were stochastic, though the difference depends heavily on the size of the group. For example, in the 1990 census, 37.3 percent of the population of Los Angeles County was Hispanic (thus 62.7 percent was non-Hispanic), so the ratio of observed cross-ethnic ties to expected ones (21.4/62.7) is .341, or roughly a third of what might be expected if ties in Los Angeles County had been randomly distributed. Non-Hispanic whites are overwhelmingly the
most popular out-group; this is probably a function of both group size and status. Mathematically, when using a measure based on a small number of generated names (e.g., three confidants), the expected number of cross-group contacts would be greatest when all groups are equal in size (Feld and Carter 1998). Accordingly, one would expect reasonable heterogeneity of strong ties in Los Angeles where Hispanics and non-Hispanic whites are roughly equal in numbers. Yet the low proportion of cross-ethnic ties suggests that racial and ethnic constraints on networks matter more than sheer group size. The high degree of racial and ethnic clustering of ties sustains previous findings that the dimension of race is highly salient (Shrum, Cheek and Hunter 1988).

Table 2 shows that Mexican immigrants have significantly fewer cross-ethnic ties than native-born Americans of Mexican origin. As the first set of findings shows, 57.2 percent of the foreign-born report having any strong ties outside the household, as opposed to 70.9 percent of the native-born. Partly as a result, the native born have more cross-ethnic ties to non-Latinos, as shown in the second set of findings, with a third of the native born reporting cross-ethnic ties but less than 14 percent of the foreign born. Even if one considers only those who have strong ties, those born in the United States average nearly twice as many cross-ethnic ties as the foreign born, as Column 1 of the third set of findings shows. Overall, these zero-order results support the hypothesis of primary structural assimilation, with the native born showing stronger tendencies to form cross-ethnic ties than the immigrants.

Table 2 further shows that this difference in cross-ethnic ties is accentuated by residence in an ethnic concentration or in a wealthier area. Columns 3 and 6 display the values for residence inside and outside a co-ethnic concentration. The difference between the native born and foreign in overall levels of strong ties and in bridge ties to non-Hispanics is most pronounced among those living outside Hispanic concentrations. The native-born who live outside Hispanic concentrations are significantly more likely than the foreign born in their neighborhoods to have cross-ethnic ties (45.4 percent to 20.2 percent). Similarly, the native born living outside Hispanic concentrations are more likely than the native-born in Hispanic concentrations to have cross-ethnic ties. Cross-ethnic ties represent a particularly low percentage of all ties for those living inside an Hispanic concentration (roughly 15 to 19 percent), as the last set of findings shows. But among the native born outside Hispanic concentrations, 37.7 percent of all strong ties are cross-ethnic. The tendency of the native-born to have more cross-ethnic ties also occurs in the wealthier geographic areas. In the less well-off areas, the proportion of bridge ties to non-Hispanics remains uniformly low – no more than 18 percent of the respondents have any, as columns 4 and 7 show. But among the native born in wealthier strata outside areas of ethnic concentration, nearly half (48.3 percent) have cross-ethnic ties. The overall level of cross-ethnic ties is also highest among the native born in the wealthier strata. Among the same group inside Hispanic concentrations, 29.1 percent of their strong ties cross ethnic boundaries. The percentage of cross-ethnic ties is in almost all cases much lower for immigrants and those living in poorer areas.
Table 2: Proportion of Cross-Ethnic Strong Ties among those of Mexican Origin, by Place of Residence, Wealth of Neighborhood and Nativity

<table>
<thead>
<tr>
<th>Place of Birth</th>
<th>Overall Mean (1)</th>
<th>N (2)</th>
<th>Outside Co-ethnic Concentration</th>
<th>Inside Co-ethnic Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>All Strata (3)</td>
<td>Low-Poverty Strata (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High-Medium Poverty (4)</td>
<td>Low-Medium Poverty (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High-Poverty Strata (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of Mexican-origin respondents reporting any strong ties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>.079</td>
<td>180</td>
<td>.826 (.048)</td>
<td>.560 (.026)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.460 (.014)</td>
<td>.521 (.011)</td>
</tr>
<tr>
<td>Foreign</td>
<td>.572</td>
<td>517</td>
<td>.613 (.040)</td>
<td>.545 (.031)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.571 (.037)</td>
<td>.584 (.024)</td>
</tr>
<tr>
<td>Proportion of respondents with bridge ties to non-Hispanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>.327</td>
<td>180</td>
<td>.454 (.051)</td>
<td>.188 (.031)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.153 (.034)</td>
<td>.135 (.026)</td>
</tr>
<tr>
<td>Foreign</td>
<td>.136</td>
<td>517</td>
<td>.202 (.022)</td>
<td>.094 (.024)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.178 (.020)</td>
<td>.090 (.022)</td>
</tr>
<tr>
<td>Mean proportion of all ties that are bridges to non-Hispanicsa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>.307</td>
<td>315</td>
<td>.377 (.036)</td>
<td>.387 (.022)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.182 (.022)</td>
<td>.193 (.020)</td>
</tr>
<tr>
<td>Foreign</td>
<td>.161</td>
<td>853</td>
<td>.184 (.016)</td>
<td>.190 (.019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.166 (.015)</td>
<td>.145 (.014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.144 (.013)</td>
<td>.119 (.016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.111 (.012)</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

a Mexican-origin respondents living in census tracts that were more than 50 percent Hispanic in 1990 were considered to be in a co-ethnic concentration.
b Medium-and high-poverty strata are defined as those in which more than 20 percent of the residents fall below the poverty line.
c N refers here to the total numbers of ties, not the total number of respondents. Each tie is assigned the weight of the respondent, but all ties are then averaged. Conventional estimation of standard errors would be biased. Race/ethnicity data are missing on two of the 1,170 total number of ties

The greater number of cross-ethnic ties among the native born compared to the foreign born thus appears consistent with Gordon’s hypothesis that greater primary structural assimilation occurs the longer the members of an immigrant group have been in the United States. The next research task is to ascertain the extent to which this tendency is a function of spatial assimilation, as researchers examining geographic mobility as a main component of structural assimilation implicitly assume. The results in Table 3 show the extent to which this nativity effect holds up when other variables are controlled, including variables reflecting neighborhood characteristics alone and thus spatial assimilation.

Native-born Mexican-origin persons are twice as likely to report cross-ethnic ties as Mexican immigrants (see the incidence rate ratio of 2.0 for Model 1), a tendency that changes little regardless of whether respondents live outside areas of ethnic concentration (see Model 2 where the ratio remains at nearly 1.9 when this factor is controlled). Taking into account the economic well-being of the neighborhood, however, reduces the zero-order ratio to 1.6, indicating that natives are still 60 percent more likely than immigrants to report cross-ethnic ties, even after considering that natives tend to live in better-off areas. This result holds up even when controlling for the tendency to live in non-co-ethnic areas (Model 4). In other words, the force of spatial assimilation per se, represented here by the degree to which the neighborhood of residence is well off, intersects with the tendency to form primary out-group ties. As a consequence, the results support the assumption of residential-assimilation researchers that spatial variables often function as reasonably good proxies of structural assimilation.

However, Model 4 also shows a strong and statistically significant effect
of primary structural assimilation remaining even after taking the influence of spatial indicators into account. This shows that processes of primary structural assimilation cannot be totally subsumed under categories of spatial assimilation, but rather that primary assimilation inserts its own dynamics into the incorporation experience. Further support, albeit weak, for this idea emerges in models 5 and 6. Model 5 shows that the nativity effect (the primary structural assimilation effect) is accentuated in non-co-ethnic neighborhoods, as would be expected by the classical structural assimilation hypothesis, though the effect is not statistically significant. Model 6 shows that neighborhood quality is more important for the foreign born than native born in predicting the number of cross-ethnic ties. Finally, results in Models 7 and 8 show that when the effects of a number of individual-level variables that might also explain the primary structural assimilation effect are examined, they do not appreciably reduce the nativity coefficient. This indicates that processes of primary structural assimilation continue to exert their influence even when the native born differ from immigrants in individual characteristics.

Discussion and Conclusions

In finding that native-born Mexican-origin persons are more involved in cross-ethnic ties than Mexican immigrants, this study reaffirms the importance of primary group relations in the structural incorporation of immigrant groups. Strong ties represent primary relations – not just contacts – and thus reflect the kind of social support that Gordon (1964) emphasized when discussing structural assimilation. Greater structural assimilation stems from successive immigrant generations reporting more cross-ethnic ties to other racial and ethnic groups, particularly to native-born whites. This measurement of similarity in ties entails the major advantage of being more direct than measures of spatial assimilation, which consider only where immigrants reside and thereby must rely on the assumption that relationships develop among racially and ethnically dissimilar people who happen to live near one another. In fact, this assumption is partially but not fully born out here.

The traditional argument for spatial assimilation assumes that the first generation may be unlikely to leave poor ethnic enclaves for many years, if at all. For that reason, spatial assimilation theory never clearly distinguishes whether moving to the suburbs is a sign of socioeconomic mobility or social integration. However, the recent growth of immigrant concentrations in suburbs, often immediately upon arrival in the United States, (Logan et al. 2002, Tseng 1995) suggests a need to fine-tune the traditional concepts of spatial assimilation. The findings presented here provide empirical evidence to suggest that spatial assimilation measures capture important aspects of the dynamic of structural incorporation, especially those parts linked to economic assimilation. Such measures fail to reflect fully the development of primary social ties and thus the extent to which immigrant groups are becoming structurally assimilated. The findings reaffirm the importance of spatial assimilation measures for research on immigrant group incorporation while showing the limitations of assuming that spatial assimilation alone is sufficient for structural assimilation. Further work along these lines would benefit from more complete data on immigrants’ social networks.
Table 3: Poisson Regression of the Number of Cross-Ethnic Ties to non-Hispanics among the Mexican-Origin Population, by Neighborhood, Demographic and Socioeconomic Characteristics

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of alters overall</td>
<td>3.050***</td>
<td>3.033***</td>
<td>2.981***</td>
<td>2.976***</td>
<td>3.070***</td>
<td>2.986***</td>
<td>2.930***</td>
<td>2.939***</td>
</tr>
<tr>
<td></td>
<td>(.451)</td>
<td>(.450)</td>
<td>(.445)</td>
<td>(.450)</td>
<td>(.473)</td>
<td>(.441)</td>
<td>(.434)</td>
<td>(.430)</td>
</tr>
<tr>
<td>Native born</td>
<td>2.017***</td>
<td>1.880***</td>
<td>1.584**</td>
<td>1.583**</td>
<td>1.301</td>
<td>1.745**</td>
<td>1.448**</td>
<td>1.797**</td>
</tr>
<tr>
<td></td>
<td>(.453)</td>
<td>(.400)</td>
<td>(.315)</td>
<td>(.315)</td>
<td>(.618)</td>
<td>(.393)</td>
<td>(.271)</td>
<td>(.469)</td>
</tr>
<tr>
<td>Outside co-ethnic concentration</td>
<td>1.621*</td>
<td>1.098</td>
<td>1.244</td>
<td>1.621*</td>
<td>1.098</td>
<td>1.244</td>
<td>1.621*</td>
<td>1.098</td>
</tr>
<tr>
<td></td>
<td>(.421)</td>
<td>(.353)</td>
<td>(.453)</td>
<td>(.421)</td>
<td>(.353)</td>
<td>(.453)</td>
<td>(.421)</td>
<td>(.353)</td>
</tr>
<tr>
<td>Neighborhood quality</td>
<td></td>
<td></td>
<td>1.746***</td>
<td>1.696***</td>
<td></td>
<td>1.956***</td>
<td>1.538***</td>
<td>1.823***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.182)</td>
<td>(.266)</td>
<td></td>
<td>(.256)</td>
<td>(.184)</td>
<td>(.312)</td>
</tr>
<tr>
<td>NB* outside co-ethnic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB* neighborhood quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.772</td>
<td>.697</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.157)</td>
<td>(.163)</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.036</td>
<td>1.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.194)</td>
<td>(.189)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.110***</td>
<td>1.131**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.051)</td>
<td>(.056)</td>
</tr>
<tr>
<td>Age squared</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.99**</td>
<td>.999**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.001)</td>
<td>(.001)</td>
</tr>
<tr>
<td>Speaks English well or very well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.280</td>
<td>1.128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.452)</td>
<td>(.424)</td>
</tr>
</tbody>
</table>

Note: Incidence rate ratio with transformed standard errors in parentheses.
*p < .10 **p < .05 ***p < .01, two-tailed test
References

Mexican Nativity and Cross-Ethnic Primary Ties

Mexican Nativity and Cross-Ethnic Primary Ties

